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Abstract

Healthcare applications require accurate and
uncertainty-aware machine learning models,
providing confidence rather than only black-
box predictions. However, training such deep
learning models with insufficient data at in-
dividual sites (e.g., hospitals) poses a chal-
lenge. Federated learning (FL) mitigates this
by allowing data holders to collaboratively train
models without sharing sensitive health data.
Yet, we identify two major realistic challenges
when building uncertainty estimates in FL, se-
vere data heterogeneity and high computational
overhead. This paper proposes FedEE, an
uncertainty-aware and efficient personalized FL
framework for realistic healthcare applications.
FedEE achieves an efficient way of ensembling
by incorporating lightweight early exit blocks
into a single backbone model. These blocks are
personalized for each client to tackle data het-
erogeneity. Experiments with four FL strate-
gies and three datasets demonstrate that FedEE
achieves up to a 15% improvement in uncer-
tainty estimation from vanilla softmax entropy
and is competitive with expensive baselines,
showcasing in the order of 5× improved effi-
ciency with a 5-member ensemble.

Keywords: Uncertainty quantification, feder-
ated learning, healthcare, data heterogeneity

Data and Code Availability We use the follow-
ing open data: (1) the PAMAP2 dataset (Reiss and
Stricker, 2012) (2) The ISIC2019 datasets (Tschandl
et al., 2018; Codella et al., 2018; Combalia et al.,
2019) (3) the PhysioNet-2016 dataset (Liu et al.,
2016; Goldberger et al., 2000). The code can be found
in our Github Repository.

Institutional Review Board (IRB) This study
obtained IRB approval by the Ethics Committee of
the Department of Computer Science and Technol-
ogy at the University of Cambridge to work with the
public data described.

1. Introduction

In line with the impact on other domains of science,
deep learning has become popular in medical diagno-
sis and health monitoring. However, clinicians often
hesitate to trust results from black-box deep learning
models mainly due to the potential of unaware incor-
rect predictions. One way to tackle this problem is
by incorporating a calibrated confidence score along
with the model prediction (Bhatt et al., 2021). This
uncertainty awareness is crucial but challenging, es-
pecially when a model is trained with limited data
(leading to overfitting), which is the case, for exam-
ple, if a hospital trains solely using its own data.

Modern deep learning architectures rely on large
amounts of data to learn robust and generalizable
models (Alzubaidi et al., 2021). The standard way
of aggregating data across multiple data sources is
difficult for sensitive health data given the privacy
restrictions. Federated Learning (FL) (Kairouz et al.,
2021) emerges as a promising solution, enabling the
data holders (called clients) to collaboratively train a
model while keeping their private data local.

The above arguments suggest that a practical deep
learning system for health needs to provide uncer-
tainty estimates for predictions and be developed
within an FL setting. While uncertainty estimation
has been extensively studied in centralized machine
learning (Abdar et al., 2021), systems with both ca-
pabilities are rare in general and absent in the con-
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Figure 1: Uncertainty estimation for an FL client
with a distinct data distribution. When lo-
cal data distribution differs from the global
distribution (a), the uncertainty quantified
by the global model is less useful than that
of the personalized model in distinguishing
correct/incorrect predictions (b).
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Figure 2: Computation cost of common methods on
three healthcare applications, using one
round FL training and one batch inference.

text of health applications. Our paper fills this re-
search gap by uncovering and addressing the non-
trivial challenges hindering uncertainty quantification
in decentralized settings.

Challenges. Firstly, health data across clients is
highly heterogeneous due to factors like geographic
diversity of disease prevalence and variations in data
collection technologies. Consequently, a single model
often fails to produce accurate predictions across all
clients (Tan et al., 2021). We find that uncertainty
estimates also suffer from such heterogeneity and sim-
ple adaptation of uncertainty quantification methods
with FL aggregation yields poor performance (Zhang
et al., 2023). Figure 1 illustrates this issue, where a
global model struggles with inadequate uncertainty
estimation for data that deviates from the global
distribution, while a personalized model gives high-
quality uncertainty that could differentiate correct
and incorrect local client predictions.

Secondly, popular uncertainty estimation meth-
ods in deep learning either learn multiple versions

of a model, as in ensembles (Lakshminarayanan
et al., 2017) and Bayesian networks (MacKay, 1992),
or introduce stochastic processes at inference as in
Monte-Carlo dropout (Gal and Ghahramani, 2016).
All these methods are compute and memory inten-
sive. This is evident in Figure 2, which shows
the overhead for applications like human activity
recognition (HAR), dermoscopy melanoma predic-
tion (dermoscopy), and PCG heart disease classifi-
cation (PCG), with dataset details in Section 5.1.
In FL, this overhead is amplified due to longer con-
vergence time and the need for network communica-
tion (Qiu et al., 2023), raising entry barriers, espe-
cially for smaller clinics or developing regions with
limited computational resources.

This work. To address the above challenges
we propose FedEE, an uncertainty-aware and effi-
cient personalized FL framework for realistic health-
care applications. FedEE employs Early Exit En-
sembles (EEE), incorporating lightweight early exit
blocks with minimal parameters to form an ensem-
ble of weight-sharing sub-networks from the backbone
model. To handle health data heterogeneity, FedEE
takes a personalized approach by training the early
exit blocks only using local data, while aggregating
the backbone deep learning model across clients. The
computational overhead is substantially diminished
with the efficient ensembling, as FedEE requires only
one backbone model during training and one forward
pass during inference.

We evaluate FedEE against three baselines us-
ing four FL strategies on three real-world multi-site
healthcare datasets with natural partitions. These
datasets encompass a range of classification applica-
tions, including heart disease detection, human ac-
tivity recognition, and melanoma class classification,
involving various types of input data, such as audio,
images, and time series. To evaluate the effective-
ness of the uncertainty qualification methods, we de-
sign two evaluation tasks: misclassification detection
and selective prediction. Additionally, we measure
the memory, computation and communication costs
of the methods. The results highlight FedEE’s com-
parable or superior performance to baselines with sig-
nificantly improved efficiency and sustainability.

Our main contributions are summarized as follows:

• For the first time, we study the problem of un-
certainty quantification using decentralized health
data. We identify that data heterogeneity and high
computation cost are two major challenges hinder-
ing trustworthy deep learning for health.
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• We propose a efficient and uncertainty-aware per-
sonalized FL framework, FedEE, leveraging early
exit ensembles to address the 2 above challenges.

• Extensive experiments demonstrate that our
method enhances uncertainty estimation in FL
with data heterogeneity by up to 15%, while induc-
ing minimal overhead (approximately 5× higher ef-
ficiency than baselines).

2. Related Work

2.1. Federated Learning

Despite advancements in deep learning research for
healthcare, one of the crucial challenges remaining
is data availability (Kelly et al., 2019). FL offers a
promising solution by enabling collaborative training
without transferring sensitive data. However, data
heterogeneity, prevalent in healthcare, has been a ma-
jor concern prohibiting learning a single strong global
model for all clients due to poor convergence and ob-
jective inconsistency (Li et al., 2020; Wang et al.,
2020b). Efforts have focused on two directions: i)
enhancing the FL process for global model robust-
ness and generalizability, and ii) personalizing local
models based on individual data.
The first set of methods includes data-driven ap-

proaches (Zhao et al., 2018; Xia et al., 2024b), feder-
ated optimization methods (Reddi et al., 2020), client
selection and server aggregation methods (Wang
et al., 2020a; Xia et al., 2023), and regulariza-
tion methods preventing model divergence (Li et al.,
2020). The second set involves personalizing the
global model via transfer learning (Kairouz et al.,
2021; Mansour et al., 2020), or training personal-
ized models locally with benefits from other clients,
for example through parameter decoupling (Li et al.,
2021b), or client similarities (Lu et al., 2022). While
some personalized methods like FedBN (Li et al.,
2021b) and FedAP (Lu et al., 2022) show great
promise with non-IID health data, existing work of-
ten overlooks the necessity for providing high quality
uncertainty estimation in addition to high predictive
performance.

2.2. Uncertainty Quantification

A trustworthy health model needs to convey uncer-
tainty when predictions may be inaccurate, prompt-
ing human intervention and improving risk manage-
ment. However, deep learning models are typically
trained and evaluated for classification metrics like
accuracy, AUC, sensitivity, and specificity, which may

not truly reflect clinical applicability (Kelly et al.,
2019). Communicating model uncertainty is cru-
cial for trustworthy healthcare applications to reduce
overconfident misdiagnoses but often overlooked.

Deep learning models traditionally express confi-
dence through the entropy value of predicted prob-
abilities, but this approach is known to be over-
confident (Guo et al., 2017). Bayesian Neural Net-
works (MacKay, 1992) treat weights and outputs as
random variables instead of single values, but are
computationally expensive and intractable for neural
networks, and data-intensive in training (Hernández-
Lobato and Adams, 2015; Xia et al., 2024a). For
neural networks and deep learning, researchers has
proposed Frequentist methods to introduce random-
ness and approximate the posterior parameter dis-
tribution, such as Monte Carlo (MC) Dropout (Gal
and Ghahramani, 2016) and deep ensembles (Laksh-
minarayanan et al., 2017). Their direct adoption in
FL have been explored under IID settings (Linsner
et al., 2021) and show promising potential, but can
be unrealistic in practice due to high memory, compu-
tation, and communication demands. They also fail
to tackle the data heterogeneity commonly present
in healthcare applications and affecting uncertainty
estimation.

Some approaches have explored practical ensem-
bling and bayesian methods in federated learning for
accuracy improvement, but they did not focus on esti-
mated uncertainty and many had additional require-
ments unsuitable for healthcare applications (Chen
and Chao, 2021; Shi et al., 2021; Zhu et al., 2023),
including extra server datasets and a large number of
clients for sampling the ensemble.

Early exit ensembles (EEE) (Qendro et al., 2021)
have proven effective and efficient in uncertainty esti-
mation for centralized learning. Initially introduced
to prevent overfitting by dynamically altering the
computational graph of a neural network, early exits
have been extended to quantify uncertainty in medi-
cal imaging and biosignal classification (Qendro et al.,
2021; Campbell et al., 2022). We build upon this
early exits approach and for the first time apply it
in the context of federated learning for efficient and
personalized uncertainty estimation.

3. Problem Formulation

In this section, we introduce the preliminaries and an-
notations to be used throughout the paper, followed
by formulating our problem and goals. Since a model
might consist of multiple members of a neural net-
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Figure 3: Design of the FedEE framework. The global backbone is trained using FL, while the light-weighted
local early exit ensembles (EEE) remains personalized for uncertainty estimation.

work architecture, let’s denote the neural network as
θ and the entire model (or collection of models) as Φ.

3.1. Personalized FL Objective

Suppose there are K clients each with local data
Dk = {xi, yi}nk

i=1. The standard FL objective is to
learn a global model Φ that performs well for all
the clients on average. However, the identical global
model usually struggle to have desirable performance
for every client under significant data heterogeneity.
At the other end of the spectrum, instead of train-

ing and deploying the same global model, each client
k can build a personalized model Φk. Then we con-
sider the objective of personalized Federated Learn-
ing (pFL) (Li et al., 2021a; Tan et al., 2021),

min
Φ1,Φ2,...,ΦK

F (Φ) :=

K∑
k=1

pk · Fk(Φk), (1)

where we optimize an individual model Φk for each
client k that performs well on its local data Dk,
Fk(·) is the local objective function for the k-th client
weighted by pk (pk ≥ 0 and

∑
k pk = 1).

3.2. Uncertainty Measurement

For a given neural network model θ and data (x, y),
confidence can be measured by calculating the Shan-
non entropy of the predictive distribution (e.g., soft-
max of the output),

H(y|x, θ) = −
C∑
i=1

pi log(pi), (2)

where H represents the calculated entropy, pi =
p(y = ci|x, θ) represents the predicted probability of
class i, and the summation is taken over C classes.

However, softmax entropy of a single determinis-
tic model is often over-confident (Guo et al., 2017).

To mitigate this issue, MC-Dropout, deep ensembles
and early exit ensembles aim to inject randomness
by sampling an ensemble of predictions during infer-
ence,M = {P (y|x, θ1), P (y|x, θ2), . . . , P (y|x, θ|M|)}.
Final predictions are obtained by their mean, and
uncertainty can be measured by the predictive en-
tropy by calculating pi in Equation (2) using pi =
1

|M|
∑|M|

t=1 p(y = ci|x, θt), where |M| is the size of the
ensemble members.

3.3. Research Goals

In our study, we care about both the predictive accu-
racy and uncertainty estimates of the local models on
respective local data. This is also the motivation of
participating clients for an accurate and uncertainty-
aware model. The goal of uncertainty-aware person-
alized federated learning is two-fold.

1. We want to learn through federated learning a per-
sonalized deep learning model Φk for each client k,
which achieves high predictive accuracy on its lo-
cal data Dk = {xi, yi}nk

i=1.

2. The personalized model Φk is expected to ac-
curately assess the confidence in its predictions
by quantifying the predictive entropy H(y|x,Φk).
Higher uncertainty should correspond to situa-
tions where the model lacks confidence in its pre-
dictions. We formulate two tasks, in line with
existing literature (Combalia et al., 2020; Kompa
et al., 2021), representing our goal of identifying
potential misclassifications and enhancing the re-
liability of predictions.

• Misdiagnosis Detection. We assess the
model’s ability to differentiate between correct
and incorrect predictions, identifying cases that
may require the attention of physicians. AU-
ROC of misdiagnosis detection is defined as
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AUROC =
1

NMNC

∑
i∈M

∑
j∈C

1(σi > σj), (3)

where M refers to the misdiagnoses and C refers
to the correct diagnoses, 1 is the indicator func-
tion and σx is the quantified uncertainty of data
sample x.

• Selective Prediction. We discard the most
uncertain samples (leaving them for expert hu-
man review) from the test dataset and evalu-
ate the prediction performance of the remaining
data. The evaluation metric of selective predic-
tion is defined as:

PSEL = P({x ∈ X | σx ≤ σh}), (4)

where P is the performance metric (e.g. accu-
racy), X is the dataset, σx is the quantified un-
certainty of data sample x, and σh is the esti-
mated uncertainty for threshold h, e.g. upper
40%.

4. Method

4.1. Overview

To achieve the aforementioned goals towards trust-
worthy health applications, we propose FedEE,
an uncertainty-aware and efficient personalized FL
framework. In response to the challenges posed by
health data heterogeneity and the high computa-
tional overhead for decentralized uncertainty esti-
mates, FedEE employs Early Exit Ensembles (EEE)
to achieve both personalization and efficient uncer-
tainty quantification. An overview of FedEE is pre-
sented in Figure 3: the left part illustrates the feder-
ated iterations, while the right side shows the learn-
ing process of the global model and local EEEs. We
elaborate on the key components of FedEE below.

4.2. Early Exit Ensembles Model Structure

Effectively estimating uncertainty requires introduc-
ing randomness into deep learning models (Abdar
et al., 2021). Since we want to achieve uncertainty-
awareness while maintaining efficiency, leveraging di-
verse information from the model becomes impor-
tant (Shen et al., 2023). Our approach leverages di-
verse feature representations from different layers of a
single deep learning model. These features are passed
through lightweight early exit blocks integrated into
the backbone, creating an efficient ensemble.

Consider a neural network θ as a sequence of B
blocks as depicted in the top blue dashed box in Fig-
ure 3, and θ = ∪Bi=1θi represents the union of each
block’s parameters (each block’s parameters are mu-
tually exclusive). In an early exit ensemble, we in-
corporate an exit block gϕi after each chosen exit i
leveraging the intermediary output, each producing
an prediction Pϕi

(y|x), as illustrated in the orange
box in Figure 3. In this way, we get an ensemble of
predictions,

M = {Pϕ1(y|x), Pϕ2(y|x), . . . , PϕB−1
(y|x), Pθ(y|x)},

(5)
with size |M| = B. The choice of exits is flexible with
the specific task and architecture. The full model Φ
constitutes of the backbone θ and the exits {ϕ}.

During training, a weighted sum of each exit
block’s predictive loss is used to jointly train all the
exits in the ensemble,

L = L(y, fθ(y|x)) + ΣB−1
i=1 αiL(y, gϕ1

(y|x)), (6)

where αi ∈ [0, 1] is a weight associated with the i-th
exit, adjusting the importance of each exits. During
inference, the final prediction is obtained by averag-
ing the ensemble predictions.

Early exit ensembles achieve diversity by combin-
ing information from different layers of the backbone
in a single forward pass, creating an implicit ensem-
ble of models with varying depths. This approach
is compatible with any multi-layer feed-forward net-
work. In our work, we design our early exit blocks to
be light-weight. Following Qendro et al. (2021), the
i-th early exit meta block is defined as:

gϕi
(h(i)) = W

(i)
2 σ(W

(i)
1 f(h(i)) + b

(i)
1 ) + b

(i)
2 , (7)

where W and b are weights and bias matrices of lin-
ear layers, f(·) is a average pooling layer, σ(·) is an
activation function such as RELU.

To address the potential impact of weaker repre-
sentation power in earlier exits on accuracy, a con-
ditional architecture is adopted. The number of fea-
tures in each exit block is inversely proportional to
the exit point so that earlier exits have access to a
larger number of parameters to learn more complex
relations between features.

4.3. Personalized Federated Training

Recognizing the potential of personalization in en-
hancing uncertainty estimation quality, which is pro-
nounced in the example in Figure 1(b), we choose
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Algorithm 1: FedEE. θ is the backbone model
parameters, and ϕ refers to the EE blocks. Dk

(size nk) is client k’s training data, E is the num-
ber of local epochs, and η is the learning rate.

Server executes:
Initialize global backbone model θ0
for each client k do

Randomly initialize local exit blocks ϕk

end
for each round t = 0, 1, 2, . . . do

Send θt to all participating clients
for each client k ∈ St do

θk∗t+1 ← ClientUpdate()
end
mt ←

∑
k∈St

nk

θt+1 ←
∑

k∈St

nk

mt
θk∗t+1 ▷ Server aggregation

end
Return each personalized model Φk ← θ ∪ ϕk

ClientUpdate():
Receive θt from server, fork θk ← θt
for each local epoch e = 1, 2, ...E do

gkt = ∇L(Dk, θk ∪ϕk) ▷ Local objective
(θk ∪ϕk)← (θk ∪ϕk)−ηgkt ▷ Joint training

end
Return global model θk

to adopt a personalized approach in our federated
uncertainty estimation. To achieve this, we intro-
duce a novel personalized training strategy to the
framework, where we train each client’s early exit
meta-models using only the local data, and plug them
to the globally synchronized backbone deep learning
model. The pseudo-code is detailed in Algorithm 1.
The distinctive feature of this approach is the inclu-
sion of local early exit blocks ϕ, enabling uncertainty
awareness and personalization. The framework can
accommodate other personalization and optimization
techniques by modifying the local objective or aggre-
gation function.

4.4. Analysis of Computation and
Communication Cost

Table 1 compares costs between FedEE and exist-
ing methods. Deep ensembles are the most resource-
intensive, requring training |M| independent models.
This cost is exacerbated in FL, spreading the compu-
tation cost across every client at each training round
and local epoch, and leading to increased network
communication overhead. MC-Dropout, while not

Table 1: FL computational and communicational
costs of MC-Dropout, deep ensembles and
FedEE. |M| is the ensemble size, F and
τ denotes the number of FLOPs (floating-
point operations) during inference and
training, and R is the number of commu-
nication rounds.

Method Size FLOPs Comp. Comm.

Backbone |θ| F τ |θ| ∗ R
MC-Dropout |θ| F ∗ |M| τ |θ| ∗ R
Deep Ensembles |θ| ∗ |M| F ∗ |M| τ ∗ |M| |θ| ∗ R ∗ |M|
FedEE |θ|+ |ϕ| F + Fϕ τ + τϕ |θ| ∗ R

introducing costs during federated training, involves
multiple forward passes during inference, which is
also computationally expensive. In contrast, FedEE
uses a single model with one forward pass, with mem-
ory and computational overhead only from the exit

block parameters ϕ = ∪|M|−1
i=1 ϕi. Since generally

|ϕ| ≪ |θ|, memory and computation cost are reduced
by leveraging shared weights between the ensembles.

5. Experiments

5.1. Datasets

For a comprehensive and realistic evaluation, we uti-
lize three diverse real-world health datasets with
varying sample sizes, input modalities, and levels of
data heterogeneity. Table. 2 presents key characteris-
tics of these datasets, which are naturally partitioned
from different sources. The datasets exhibit univer-
sal data heterogeneity among clients, including varia-
tions in sample numbers, label distributions, patient
demographics and data collection technologies. Fur-
ther details are provided in Appendix A.

5.2. Experimental Setup

To our knowledge, we are the first to study uncer-
tainty quantification in the FL setting using hetero-
geneous health data. Therefore, we set up our eval-
uation framework by referencing research on central-
ized uncertainty estimation (Combalia et al., 2020;
Kompa et al., 2021) and personalized federated learn-
ing (Chen et al., 2022; Li et al., 2021a).

Uncertainty estimation baselines. We imple-
mented three widely-used uncertainty estimation
methods from centralized deep learning in the FL
setting for comparison. The three baselines are the
Vanilla Softmax entropy (Backbone), which utilizes
only one inference drawn from the backbone architec-
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Table 2: Summary of datasets and FL partition.

Dataset PAMAP2 ISIC2019 PhysioNet-2016

Modality time series image audio
Task human activity recognition melanoma class prediction heart sound classification
# Samples 2,869 23,247 13,015
# Clients 8 6 6
# Classes 8 8 2

Train Partition
173, 171, 179, 181, 176,

179, 188, 185
9930, 3163, 2691, 1807,

655, 351
1554, 294, 174, 82,

5276, 427

Test Partition
174, 172, 179, 182, 177,

180, 188, 185
2483, 791, 672, 452,

164, 88
1036, 196, 117, 56,

3518, 285
Input Dimension 1000 × 3 200 × 200 × 3 101 × 99 × 1

ture; MC-Dropout (MCDrop), which keeps dropout
layers open for inference (|M| = 5); and Deep Ensem-
bles (Deep Ens.), which trains multiple global mod-
els (|M| = 5) with different weight initializations.
Unless otherwise stated, our default federated aggre-
gation strategy is FedAvg.

Evaluation metrics. We report three metrics for
each method, one for classification results (Acc.) and
two for the quality of the uncertainty estimates mea-
sured by the performance of misdiagnosis detection
(Mis. Det.) and selective prediction (Sel. Pred.).
For misclassification detection, we use the area under
the receiver operating curve (AUROC) for classifica-
tion based on the predictive entropy. For selective
prediction, we observe consistent performance across
different thresholds, and report at a 40% threshold,
showing clear accuracy improvements after absten-
tion and effectively distinguishing different methods.
For each of the metric, we report the weighted aver-
age performance across clients, with a discussion of
the averaging scheme in the Appendix.

5.3. Classification and Uncertainty
Estimation Performance

Following the setup, we now report the main exper-
imental results. The classification and uncertainty
estimation metrics for Backbone, MCDropout, Deep
Ensembles and FedEE are summarized in Table 3.
The results showcase that FedEE consistently out-
performs all baselines across metrics and datasets.
In terms of uncertainty estimation, it achieves a rel-
ative improvement of up to 15% in misdiagnosis de-
tection and 12% in selective prediction compared to
the backbone. Moreover, it surpasses the more ex-
pensive baselines by 2% to 9%. Additionally, FedEE
shows an accuracy improvement of 3% to 8%, likely

benefiting from the personalized training and diverse
feature utilization.

In real-world applications, the optimal number of
uncertain data points to remove depends on the
desired accuracy level and the availability of ex-
pert resources to review potentially uncertain points.
Hence, in addition to the selective prediction perfor-
mance at a fixed threshold in Table 3, we further
examine how predictive accuracy evolves with an in-
creasing percentage of discarded samples. As illus-
trated in Figure 4, FedEE consistently outperforms
other methods, especially at smaller thresholds. No-
tably, FedEE achieves the same accuracy by discard-
ing only 20% of samples, while other baselines require
a drop of at least 40%, reducing the workload for ad-
ditional physician examinations. The steeper slope
indicates the higher quality of estimated uncertainty.
Not only are wrong predictions reduced, but they are
also more easily identifiable, as evidenced by a higher
AUROC in misdiagnosis detection.

5.4. Improvement in Efficiency

Having shown FedEE’s superior performance in clas-
sification and uncertainty estimation, we now delve
into a detailed analysis of the induced overhead.
Though deep ensembles also show good performance,
FedEE brings notable efficiency improvement to it,
reducing computation and communication cost by a
factor of |M|, where |M| = 5 in our case. Having
analyzed theoretically in Table 1, we further compare
the actual estimated costs in the experiments.

Table 4 summarizes the memory usage (size of
model) and FLOPs during inference. As expected,
deep ensembles have the highest memory footprint
since it consists of 5 independently trained models.
The 5× increase in size for deep ensembles translates
to 5× communication cost during each FL round,
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Table 3: Performance for classification, misdiagnosis detection, and selective prediction. Best method in
bold, and relative improvement of FedEE compared to backbone and the best baseline shown in ∆.

Method
PAMAP2 ISIC-2019 PhysioNet-2016

Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑) Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑) Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑)
Backbone 0.780± 0.01 0.769 ± 0.02 0.866 ± 0.02 0.710 ± 0.02 0.804 ± 0.01 0.827 ± 0.03 0.856 ± 0.01 0.772 ± 0.07 0.887 ± 0.01
MCDrop 0.782 ± 0.02 0.817 ± 0.01 0.894 ± 0.02 0.707 ± 0.02 0.790 ± 0.01 0.815 ± 0.02 0.842 ± 0.01 0.847 ± 0.03 0.880 ± 0.01
Deep Ens. 0.787 ± 0.01 0.788 ± 0.01 0.877 ± 0.01 0.725 ± 0.00 0.804 ± 0.00 0.847 ± 0.01 0.855 ± 0.01 0.871 ± 0.01 0.889 ± 0.01
FedEE 0.840 ± 0.01 0.856 ± 0.01 0.942 ± 0.01 0.748 ± 0.01 0.822 ± 0.01 0.924 ± 0.01 0.879 ± 0.02 0.885 ± 0.02 0.945 ± 0.01
∆ (%) (7.7/6.7) (11.3/4.8) (8.8/5.4) (5.4/3.2) (2.2/2.2) (11.7/9.1) (2.7/2.8) (14.6/1.6) (6.5/6.3)
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Figure 4: Evolution of the predictive performance as the most uncertain samples are removed.

Table 4: Efficiency evaluation of memory (Millions)
and inference FLOPs (Giga).

Backbone MCDrop Deep Ens. FedEE

PAMAP2 Size (↓) 0.953 0.953 4.765 0.963
(3-layer CNN) FLOPs (↓) 0.836 4.180 4.180 0.836

ISIC2019 Size (↓) 4.018 4.018 20.090 4.725
(EfficientNet-b0) FLOPs (↓) 20.374 101.870 101.870 20.422

PhysioNet-2016 Size (↓) 11.171 11.171 55.855 11.753
(ResNet18) FLOPs (↓) 27.657 138.285 138.285 27.700

and 5× local training time. This gap increases with
each round in training, with the estimated computa-
tional and communicational cost illustrated in Fig-
ure 10 in the Appendix. MC-Dropout is the most
memory-efficient but requires 5× the FLOPs for un-
certainty estimation during inference and has lower
performance in classification and uncertainty estima-
tion. In contrast, FedEE introduces only a small ad-
ditional memory overhead while significantly improv-
ing performance.
Overall, FedEE strikes a better trade-off between

performance and costs, inducing minimal overhead in
memory demand, training time, server-client commu-
nication and inference time, with comparable if not
better performance compared to the baselines.

5.5. Additional Results and Discussion

Having demonstrated FedEE’s effectiveness and su-
periority in tackling the challenges in federated uncer-
tainty estimation, we conduct additional experiments
to further explore FedEE’s capabilities.

Trade-off between classification performance
and expert workload. To maximize the benefits
of selective prediction, we delve deeper into investi-
gating the number of samples requiring expert consul-
tation to reach certainty classification performance.
For instance, Figure 5 illustrates the percentage of
data points that need to be referred if we aim for an
overall accuracy of 90% or 95% (assuming that all
cases referred to experts will be correctly diagnosed).
(The PAMAP2 dataset contains a total of 1,434 test
samples, ISIC2019 has 4,650, and PhysioNet-2016 has
5,208.) Notably, FedEE significantly outperforms the
baselines at both performance level by requiring fewer
samples to achieve the target accuracy, less than 30%
for 90% accuracy and less than 40% for 95% accuracy,
thereby imposing a lower burden on clinicians.

Compatibility with other FL techniques. We
implement FedEE combined with FedProx, and per-
sonalized FL methods FedBN, FedAP, along with
Fine-tuning (FT). The results on PAMAP2 are de-
tailed in Table 5. FedEE demonstrates compatibility
with other personalization methods, where up to 17%
improvement in misclassification detection and 16%
in selective prediction can be achieved. It consistently
outperforms vanilla softmax entropy and MC-Drop
across datasets and combined strategies. Remark-
ably, FedEE surpasses the five times more resource-
intensive deep ensembles in over half of the cases,
offering the best or comparable performance in uncer-
tainty estimation with significantly higher efficiency.
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Figure 5: Percentage of data samples required for referring to doctors
in order to achieve accuracies of 90% (a) and 95% (b).
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Table 5: Performance results when combined with
other strategies. FedEE ranks first or sec-
ond in all cases for uncertainty estimation.
More results in App. C.

Strategy Method
PAMAP2

Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑)
FedProx Backbone 0.775 ± 0.01 0.771 ± 0.01 0.868 ± 0.02

MCDrop 0.778 ± 0.01 0.812 ± 0.02 0.890 ± 0.01
Deep Ens. 0.782 ± 0.00 0.775 ± 0.01 0.866 ± 0.01
FedEE 0.842 ± 0.01 0.848 ± 0.01 0.935 ± 0.01

FedAvg+FT Backbone 0.877 ± 0.01 0.878 ± 0.01 0.980 ± 0.01
MCDrop 0.870 ± 0.01 0.895 ± 0.01 0.986 ± 0.01
Deep Ens. 0.894 ± 0.00 0.907 ± 0.00 0.991 ± 0.00
FedEE 0.908 ± 0.01 0.896 ± 0.01 0.993 ± 0.00

FedProx+FT Backbone 0.869 ± 0.00 0.860 ± 0.02 0.971 ± 0.00
MCDrop 0.866 ± 0.00 0.888 ± 0.01 0.981 ± 0.00
Deep Ens. 0.892 ± 0.00 0.902 ± 0.00 0.991 ± 0.00
FedEE 0.909 ± 0.00 0.895 ± 0.01 0.992 ± 0.00

FedBN(+FT) Backbone 0.870 ± 0.01 0.870 ± 0.02 0.973 ± 0.01
MCDrop 0.867 ± 0.01 0.890 ± 0.01 0.981 ± 0.01
Deep Ens. 0.897 ± 0.00 0.902 ± 0.00 0.994 ± 0.00
FedEE 0.910 ± 0.01 0.896 ± 0.01 0.992 ± 0.00

FedAP(+FT) Backbone 0.873 ± 0.01 0.874 ± 0.02 0.977 ± 0.01
MCDrop 0.868 ± 0.01 0.885 ± 0.01 0.980 ± 0.01
Deep Ens. 0.897 ± 0.00 0.907 ± 0.01 0.992 ± 0.00
FedEE 0.921 ± 0.01 0.906 ± 0.01 0.995 ± 0.00

Out-of-distribution detection. In addition to
identifying difficult samples from the same distribu-
tion as the local training data, another key applica-
tion of uncertainty estimation is out-of-distribution
(OOD) detection. We want to investigate how
our models respond when confronted with data
from a distribution completely outside the training
data. Here we consider three data types: local in-
distribution, local OOD (from another client’s distri-
bution), and global OOD (entirely new data). Using
human activity recognition as an example, we evalu-
ate FedEE’s effectiveness in OOD detection. We use
local test data as in-distribution (ID), other clients’
test data as local OOD, and another data source, Op-

portunity dataset, as global OOD. FedEE generates
gradually higher uncertainty estimates for the two
types of OOD data (Figure 6), achieving a strong
AUROC of 0.825 for global OOD detection.

6. Conclusions and Future Work

This paper pioneers uncertainty estimation in de-
centralized health applications, addressing key chal-
lenges of data heterogeneity and high computational
cost with our novel FL framework, FedEE. Exten-
sive experiments on three real-world datasets show
FedEE’s competitive performance and significant effi-
ciency improvements. Our study contributes to trust-
worthy deep learning in healthcare by integrating un-
certainty quantification and FL in a unified frame-
work. This takes a significant step toward translating
deep learning research into practical clinical applica-
tions.

Although our method already greatly reduces the
workload on healthcare professionals using selective
prediction, the number of samples needed for refer-
ral is still quite substantial in order to achieve a high
accuracy (e.g. 95%). This could potentially be im-
proved when there are more hospitals joining and
more data available.

Due to FedEE’s high efficiency, we anticipate
widespread use of our methodology in the era of large-
scale models or foundational models as the backbone
for healthcare applications, where uncertainty esti-
mation is crucial and efficiency is a bottleneck. An-
other intriguing future direction could be address-
ing system heterogeneity by enabling clients to re-
tain only a subset of exit blocks and partial backbone
models. Clients with varying computation resources
can adapt different portions of the model, tailoring
the framework to their specific capabilities.
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José Santamaŕıa, Mohammed A Fadhel, Muthana
Al-Amidie, and Laith Farhan. Review of deep
learning: Concepts, cnn architectures, challenges,
applications, future directions. Journal of big Data,
8:1–74, 2021.

Umang Bhatt, Javier Antorán, Yunfeng Zhang,
Q Vera Liao, Prasanna Sattigeri, Riccardo
Fogliato, Gabrielle Melançon, Ranganath Krish-
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Francisco Castells, José Millet Roig, Ikaro Silva,
Alistair EW Johnson, et al. An open access

database for the evaluation of heart sound algo-
rithms. Physiological measurement, 37(12):2181,
2016.

Wang Lu, Jindong Wang, Yiqiang Chen, Xin
Qin, Renjun Xu, Dimitrios Dimitriadis, and Tao
Qin. Personalized federated learning with adap-
tive batchnorm for healthcare. IEEE Transactions
on Big Data, 2022.

David JC MacKay. A practical bayesian framework
for backpropagation networks. Neural computa-
tion, 4(3):448–472, 1992.

Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh. Three approaches
for personalization with applications to federated
learning. arXiv preprint arXiv:2002.10619, 2020.

Tanachat Nilanon, Jiayu Yao, Junheng Hao, San-
jay Purushotham, and Yan Liu. Normal/abnormal
heart sound recordings classification using convo-
lutional neural network. In 2016 computing in car-
diology conference (CinC), pages 585–588. IEEE,
2016.

Lorena Qendro, Alexander Campbell, Pietro Lio, and
Cecilia Mascolo. Early exit ensembles for uncer-
tainty quantification. In Machine Learning for
Health, pages 181–195. PMLR, 2021.

Wanyong Qiu, Kun Qian, Zhihua Wang, Yi Chang,
Zhihao Bao, Bin Hu, Björn W Schuller, and Yoshi-
haru Yamamoto. A federated learning paradigm for
heart sound classification. In 2022 44th Annual In-
ternational Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pages 1045–
1048. IEEE, 2022.

Xinchi Qiu, Titouan Parcollet, Javier Fernandez-
Marques, Pedro PB Gusmao, Yan Gao, Daniel J
Beutel, Taner Topal, Akhil Mathur, and
Nicholas D Lane. A first look into the car-
bon footprint of federated learning. Journal of
Machine Learning Research, 24(129):1–23, 2023.

Sashank Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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Appendix A. Dataset Description

PAMAP2. The PAMAP2 dataset Reiss and Stricker (2012) contains data on different physical activities
(such as walking, cycling, playing soccer, etc), measured by inertial measurement units (IMU), with a task
to classify the activities. The baseline model is a 3-layer CNN model. We follow the preprocessing pipeline
from Yuan et al. (2022). After preprocessing, the data contain 8 activity classes performed by 8 subjects,
each acting as a client.
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Figure 7: Label distribution of the 8 clients in PAMAP2 dataset.

ISIC2019. The ISIC2019 datasets (Tschandl et al., 2018; Codella et al., 2018; Combalia et al., 2019)
consist of dermoscopy images collected in 4 hospitals for melanoma class prediction. Since one hospital used
3 different imaging technologies throughout time, the data is partitioned into 6 clients in total. The task is
a multi-class classification task among 8 different melanoma classes. The baseline model is an EfficientNet-
B0 (Tan and Le, 2019) pretrained on ImageNet following the FLamby benchmark (Terrail et al., 2022), along
with preprocessing and data augmentation steps.

PhysioNet-2016. The PhysioNet-2016 dataset contains heart sound data from the PhysioNet/CinC
Challenge 2016 (Liu et al., 2016; Goldberger et al., 2000), consisting of 3240 PCG heart sound recordings
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Figure 8: Label distribution of the 6 clients in ISIC-2019 dataset in log-scale.
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Figure 9: Label distribution of the 6 clients in PhysioNet-2016 dataset in log-scale.
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from six independent databases sourced from multiple research groups around the world. The length of
recording varies from several seconds to several minutes, so we segment them into 5-second segments following
previous work using the same dataset (Nilanon et al., 2016; Qiu et al., 2022) with supporting assumption
validated by practitioners (Nilanon et al., 2016). We then extract spectrograms from the audio segments as
time-frequency feature input to a ResNet-18 model.
The label distributions of the three datasets are concluded in Fig. 7, Fig. 8 and Fig. 9.
In exploring OOD detection, we utilize an additional Opportunity dataset (Roggen et al., 2010), which

consist of 3.9K samples of four subjects performing four activity classes. We follow the preprocessing of
precious work (Yuan et al., 2022).

Appendix B. Implementation Details

Table. 6 presents the chosen setup for training and evaluation. The optimizer used in all experiments is
Adam (Kingma and Ba, 2015). The chosen µ for FedProx is set to be 0.01. The number of federated training
rounds is calculated using the same method as in the implementation of the FLamby benchmark (Terrail
et al., 2022), and is same for all the strategies. The number of rounds R is calculated as

R = npooled
epoches · ⌊N/K/B/E⌋, (8)

where npooled
epoches is the number of epoches required to train the centralized model, N is the total number of

training samples, K is the number of clients, B is the batch size and E is the number of local epoches.

Table 6: Implementation details.

Dataset ISIC2019 PAMAP2 PhysioNet-2016

Model EfficientNet-B0 CNN ResNet18
Batch Size 64 32 64
Learning Rate 0.005 0.0003 0.0001
# Local Iters 20 20 20
# Rounds 47 10 32
Metric Balanced Accuracy Macro F1-score Accuracy
Loss Weighted Focal Loss CE Loss BCE Loss

Our hyperparameters in the implementation details are selected with reference to previous research and
the common practices of each application in a centralized setting. We did not observe significant sensitivity in
the hyperparameters. For the ISIC2019 dataset, we adhere to the FLamby benchmark for all hyperparameter
and loss function selections, including a weighted focal loss for addressing class imbalance. For the other
two datasets, we use simpler standard loss functions of (binary) cross entropy loss and the learning rate and
batch size are common choices depending on the application. Below are FedEE’s results on PAMAP2 with
varying learning rates and batch sizes. Performance remained stable with less than 1% fluctuation.

Table 7: Accuracy on PAMAP2 with learning rate ranging from [0.0001, 0.0003, 0.0005] and batch size
ranging from [16, 32, 64].

0.0001 0.0003 0.0005 0.001

16 0.848 ± 0.007 0.844 ± 0.008 0.847 ± 0.010 0.841 ± 0.005
32 0.848 ± 0.005 0.848 ± 0.011 0.845 ± 0.008 0.847 ± 0.010
64 0.843 ± 0.001 0.840 ± 0.006 0.851 ± 0.007 0.845 ± 0.011
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Table 8: Misclassification detection performance (AUROC) on PAMAP2 with learning rate ranging from
[0.0001, 0.0003, 0.0005] and batch size ranging from [16, 32, 64].

0.0001 0.0003 0.0005 0.001

16 0.859 ± 0.013 0.854 ± 0.006 0.860 ± 0.007 0.849 ± 0.014
32 0.852 ± 0.019 0.863 ± 0.005 0.859 ± 0.013 0.846 ± 0.009
64 0.848 ± 0.012 0.863 ± 0.005 0.857 ± 0.013 0.853 ± 0.017

Table 9: Selective prediction performance on PAMAP2 dataset with learning rate ranging from [0.0001,
0.0003, 0.0005] and batch size ranging from [16, 32, 64].

0.0001 0.0003 0.0005 0.001

16 0.948 ± 0.014 0.944 ± 0.009 0.948 ± 0.016 0.939 ± 0.013
32 0.948 ± 0.012 0.951 ± 0.004 0.942 ± 0.013 0.942 ± 0.011
64 0.938 ± 0.006 0.945 ± 0.009 0.949 ± 0.014 0.945 ± 0.014

We train on one NVIDIA A100 GPU, and set number of forward passes T for MC-Dropout and number
of models M for deep ensembles the same as number of exits for a fair comparison. For each reported
value in the table, we run 5 experiments to get the mean and standard deviation. Whereas for federated
deep ensembles, we randomly sample 5 models from 10 trained models (4 out of 5 for ISIC2019) due to
computational constraints.

Appendix C. Additional Results

Compatibility with other FL techniques. Table 10 presents the performance of FedEE and baselines
in all the datasets and all the FL and pFL strategies.

Ablation study. To understand the benefit of personalization in the proposed method, we also conducted
a comparison with the centralized version of Early Exit Ensembles (FedEE without personalization). The
results are shown in Table 11.

Computational Costs and Carbon Emission. Figure 10 shows the comparison of estimated commu-
nication cost, computation cost and carbon emission of FedEE and deep ensembles using all three datasets.
We can see that the gap becomes larger as the training round increases. Note that the minimal difference
between FedEE and the backbone (and MC-Dropout) is so negligible that the curves practically overlap.
The carbon emission is calculated following Qiu et al. (Qiu et al., 2023), presented in Table 12. We

repeatedly query the NVIDIA System Management Interface (NVIDIA-smi) to sample the GPU power
consumption and report the average over all processed samples while training. The total training energy
consumption of K clients with hardware power e for a total of R rounds is calculated as:

T (e,K,R) =

R∑
j=1

K∑
k=1

tkek, (9)

where ti is the wall clock time per round and ek the power of client k.
The communication carbon is estimated as:

C(e,K,R) =

R∑
j=1

K∑
k=1

S(
1

D
+

1

U
)(er + ek,idle) (10)
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Table 10: Complete performance results on three datasets, including predictive accuracy (Acc.), AUROC for
misdiagnosis detection (Mis. Det.) and predictive accuracy for selective prediction (Sel. Pred.).
We can see that FedEE achieves best or second performance in all cases for uncertainty estimation.

Strategy Method
PAMAP2 ISIC-2019 PhysioNet-2016

Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑) Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑) Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑)

FedAvg

Backbone 0.780± 0.01 0.769 ± 0.02 0.866 ± 0.02 0.710 ± 0.02 0.804 ± 0.01 0.827 ± 0.03 0.856 ± 0.01 0.772 ± 0.07 0.887 ± 0.01
MCDrop 0.782 ± 0.02 0.817 ± 0.01 0.894 ± 0.02 0.707 ± 0.02 0.790 ± 0.01 0.815 ± 0.02 0.842 ± 0.01 0.847 ± 0.03 0.880 ± 0.01
Deep Ens. 0.787 ± 0.01 0.788 ± 0.01 0.877 ± 0.01 0.725 ± 0.00 0.804 ± 0.00 0.847 ± 0.01 0.855 ± 0.01 0.871 ± 0.01 0.889 ± 0.01
FedEE 0.840 ± 0.01 0.856 ± 0.01 0.942 ± 0.01 0.748 ± 0.01 0.822 ± 0.01 0.924 ± 0.01 0.879 ± 0.02 0.885 ± 0.02 0.945 ± 0.01

FedProx

Backbone 0.775 ± 0.01 0.771 ± 0.01 0.868 ± 0.02 0.754 ± 0.01 0.831 ± 0.01 0.895 ± 0.01 0.689 ± 0.15 0.614 ± 0.09 0.728 ± 0.18
MCDrop 0.778 ± 0.01 0.812 ± 0.02 0.890 ± 0.01 0.754 ± 0.01 0.801 ± 0.01 0.876 ± 0.01 0.728 ± 0.17 0.572 ± 0.14 0.740 ± 0.21
Deep Ens. 0.782 ± 0.00 0.775 ± 0.01 0.866 ± 0.01 0.771 ± 0.00 0.835 ± 0.00 0.916 ± 0.00 0.796 ± 0.03 0.522 ± 0.05 0.783 ± 0.07
FedEE 0.842 ± 0.01 0.848 ± 0.01 0.935 ± 0.01 0.748 ± 0.01 0.830 ± 0.01 0.919 ± 0.02 0.892 ± 0.03 0.857 ± 0.03 0.940 ± 0.02

FedAvg+FT

Backbone 0.877 ± 0.01 0.878 ± 0.01 0.980 ± 0.01 0.760 ± 0.03 0.839 ± 0.01 0.920 ± 0.02 0.920 ± 0.00 0.843 ± 0.04 0.950 ± 0.00
MCDrop 0.870 ± 0.01 0.895 ± 0.01 0.986 ± 0.01 0.756 ± 0.02 0.831 ± 0.01 0.867 ± 0.02 0.929 ± 0.00 0.850 ± 0.04 0.956 ± 0.00
Deep Ens. 0.894 ± 0.00 0.907 ± 0.00 0.991 ± 0.00 0.783 ± 0.01 0.866 ± 0.01 0.953 ± 0.02 0.930 ± 0.00 0.903 ± 0.00 0.961 ± 0.00
FedEE 0.908 ± 0.01 0.896 ± 0.01 0.993 ± 0.00 0.781 ± 0.00 0.875 ± 0.01 0.957 ± 0.00 0.936 ± 0.00 0.917 ± 0.00 0.969 ± 0.00

FedProx+FT

Backbone 0.869 ± 0.00 0.860 ± 0.02 0.971 ± 0.00 0.757 ± 0.02 0.841 ± 0.01 0.908 ± 0.05 0.920 ± 0.00 0.881 ± 0.02 0.949 ± 0.01
MCDrop 0.866 ± 0.00 0.888 ± 0.01 0.981 ± 0.00 0.750 ± 0.02 0.830 ± 0.02 0.891 ± 0.03 0.927 ± 0.00 0.887 ± 0.02 0.956 ± 0.00
Deep Ens. 0.892 ± 0.00 0.902 ± 0.00 0.991 ± 0.00 0.796 ± 0.01 0.869 ± 0.01 0.962 ± 0.00 0.934 ± 0.00 0.907 ± 0.00 0.962 ± 0.00
FedEE 0.909 ± 0.00 0.895 ± 0.01 0.992 ± 0.00 0.781 ± 0.01 0.876 ± 0.00 0.955 ± 0.01 0.940 ± 0.01 0.912 ± 0.01 0.972 ± 0.00

FedBN(+FT)

Backbone 0.870 ± 0.01 0.870 ± 0.02 0.973 ± 0.01 0.756 ± 0.05 0.817 ± 0.03 0.898 ± 0.06 0.922 ± 0.00 0.835 ± 0.06 0.951 ± 0.00
MCDrop 0.867 ± 0.01 0.890 ± 0.01 0.981 ± 0.01 0.753 ± 0.04 0.774 ± 0.02 0.872 ± 0.06 0.927 ± 0.00 0.804 ± 0.06 0.956 ± 0.00
Deep Ens. 0.897 ± 0.00 0.902 ± 0.00 0.994 ± 0.00 0.808 ± 0.01 0.822 ± 0.01 0.951 ± 0.00 0.933 ± 0.00 0.898 ± 0.01 0.960 ± 0.00
FedEE 0.910 ± 0.01 0.896 ± 0.01 0.992 ± 0.00 0.781 ± 0.00 0.875 ± 0.01 0.949 ± 0.02 0.945 ± 0.00 0.920 ± 0.00 0.974 ± 0.00

FedAP(+FT)

Backbone 0.873 ± 0.01 0.874 ± 0.02 0.977 ± 0.01 0.794 ± 0.02 0.832 ± 0.03 0.933 ± 0.03 0.922 ± 0.01 0.802 ± 0.03 0.951 ± 0.01
MCDrop 0.868 ± 0.01 0.885 ± 0.01 0.980 ± 0.01 0.798 ± 0.03 0.805 ± 0.03 0.926 ± 0.02 0.927 ± 0.01 0.797 ± 0.08 0.954 ± 0.00
Deep Ens. 0.897 ± 0.00 0.907 ± 0.01 0.992 ± 0.00 0.817 ± 0.01 0.847 ± 0.01 0.959 ± 0.00 0.935 ± 0.00 0.763 ± 0.07 0.964 ± 0.00
FedEE 0.921 ± 0.01 0.906 ± 0.01 0.995 ± 0.00 0.783 ± 0.00 0.870 ± 0.00 0.960 ± 0.00 0.939 ± 0.00 0.906 ± 0.01 0.968 ± 0.01

Table 11: Performance of FedEE without personalization for classification, misdiagnosis detection, and se-
lective prediction on the PAMAP2 dataset. Best method in bold.

Method
PAMAP2

Acc. (↑) Mis. Det. (↑) Sel. Pred. (↑)
Backbone 0.780 ± 0.01 0.769 ± 0.02 0.866 ± 0.02
MCDrop 0.782 ± 0.02 0.817 ± 0.01 0.894 ± 0.02
Deep Ens. 0.787 ± 0.01 0.788 ± 0.01 0.877 ± 0.01
FedEE 0.840 ± 0.01 0.856 ± 0.01 0.942 ± 0.01
Global EE 0.789 ± 0.01 0.782 ± 0.01 0.888 ± 0.01

where er accounts for energy consumption of the router and eidle accounts for the hardware idle energy
consumption. For er we use the median power of router obtained from all data submitted to during 2023
to The Power Consumption Database1, for uploading and downloading speed U and D we refer to reported
values on Speedtest2.

the total amount of CO2e emitted for FL is:

E = crate[T (e,K,R) + C(e,K,R)] (11)

1. http://www.tpcdb.com/list.php?page=1&type=11
2. https://www.speedtest.net/global-index
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Figure 10: Comparison of communication cost, computation cost and carbon emission of FedEE and deep
ensembles.

The conversion rate from energy to carbon emission crate is estimated from official governmental websites
and reports3, also following Qiu et al. (2023).

3. https://www.climate-transparency.org/
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Table 12: Estimation of energy consumption and carbon emission of FL training in three datasets, using
FedAvg strategy.

Power (W) Clock Time(s)
Training Energy
per round (Wh)

Communication Energy
per round (Wh)

Total Energy (Wh) CO2e(g)

PAMAP2 Backbone 96.51 5.36 0.14 0.00 1.45 0.41
(3-layer CNN) Deep. Ens. 482.53 26.78 0.72 0.01 7.23 2.03

FedEE 88.36 7.42 0.18 0.00 1.83 0.51

ISIC2019 Backbone 134.14 1159.53 43.21 0.00 2030.90 570.68
(EfficientNet-b0) Deep. Ens. 670.71 5797.66 216.03 0.02 10154.50 2853.41

FedEE 133.00 1095.32 40.47 0.01 1902.16 534.51

PhysioNet-2016 Backbone 156.03 38.15 1.65 0.01 53.30 14.98
(ResNet18) Deep. Ens. 780.13 190.74 8.27 0.06 266.48 74.88

FedEE 145.22 45.64 1.84 0.01 59.32 16.67
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Figure 11: Performance when considering different fairness levels on PhysioNet-2016 dataset.

Averaging Client’s Performance. To compare overall performance, metrics are often averaged across
clients either uniformly or weighted by local data size, each with its own limitations. To address this, we
propose a general averaging method defined as:

λη =

C∑
k=1

ηln(nk)∑C
k=1 η

ln(nk)
λk, (12)

where λk represents the local metric and η ∈ [1, e] adjusts the influence of dataset size. With η = e, the
average is weighted by data size; with η = 1, it becomes a simple average. Intermediate values balance these
effects. We use a weighted average (η = e) in our main experiments but also analyze different η values for a
more thorough evaluation.
We conduct a detailed investigation using the PhysioNet-2016 dataset characterized by highly uneven data

distribution, where one client holds over half of the data. Table 13 presents the macro average of three metrics
on the PhysioNet-2016 dataset. Figure 11 shows the three metrics considering different fairness levels during
result averaging. Notably, We found that FedEE exhibits substantial improvement especially with a smaller
η, outperforming the baselines even more prominently. This highlights its ability to enhance performance
while adhering to fairness considerations, a trend persisting when combined with other strategies.
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Table 13: Performance of uncertainty estimation methods on the PhysioNet-2016 dataset, reporting predic-
tive accuracy (Acc.), AUROC for misclassification detection (Mis. Det.) and predictive accuracy
for selective prediction (Sel. Pred.), reporting macro average across clients (η = 1).

Method Accuracy Mis. Det. Sel. Pred.

FedAvg
-Backbone 0.671 ± 0.037 0.677 ± 0.038 0.739 ± 0.038
-MCDrop 0.641 ± 0.022 0.705 ± 0.035 0.719 ± 0.034
-Deep Ens. 0.671 ± 0.010 0.716 ± 0.023 0.756 ± 0.017
-FedEE 0.786 ± 0.020 0.757 ± 0.021 0.861 ± 0.014

FedProx
-Backbone 0.655 ± 0.072 0.596 ± 0.033 0.699 ± 0.084
-MCDrop 0.652 ± 0.058 0.599 ± 0.049 0.696 ± 0.084
-Deep Ens. 0.727 ± 0.012 0.585 ± 0.025 0.753 ± 0.029
-FedEE 0.785 ± 0.036 0.742 ± 0.028 0.855 ± 0.025

FedAvg+FT
-Backbone 0.818 ± 0.007 0.694 ± 0.032 0.862 ± 0.009
-MCDrop 0.820 ± 0.009 0.693 ± 0.081 0.864 ± 0.018
-Deep Ens. 0.838 ± 0.012 0.735 ± 0.030 0.892 ± 0.006
-FedEE 0.830 ± 0.026 0.801 ± 0.019 0.898 ± 0.028

FedProx+FT
-Backbone 0.802 ± 0.012 0.720 ± 0.033 0.859 ± 0.014
-MCDrop 0.816 ± 0.018 0.727 ± 0.065 0.867 ± 0.016
-Deep Ens. 0.833 ± 0.003 0.729 ± 0.063 0.876 ± 0.008
-FedEE 0.842 ± 0.021 0.761 ± 0.069 0.908 ± 0.021

FedBN (+FT)
-Backbone 0.807 ± 0.010 0.696 ± 0.025 0.856 ± 0.006
-MCDrop 0.814 ± 0.008 0.707 ± 0.068 0.865 ± 0.009
-Deep Ens. 0.835 ± 0.006 0.764 ± 0.018 0.886 ± 0.010
-FedEE 0.881 ± 0.008 0.805 ± 0.011 0.933 ± 0.006

FedAP (+FT)
-Backbone 0.803 ± 0.029 0.716 ± 0.031 0.859 ± 0.029
-MCDrop 0.823 ± 0.017 0.714 ± 0.065 0.869 ± 0.021
-Deep Ens. 0.845 ± 0.009 0.682 ± 0.093 0.894 ± 0.013
-FedEE 0.846 ± 0.013 0.731 ± 0.078 0.910 ± 0.020
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