
Proceedings of Machine Learning Research 259:1–13, 2024 Machine Learning for Health (ML4H) 2024

RespLLM: Unifying Audio and Text with Multimodal LLMs for
Generalized Respiratory Health Prediction

Yuwei Zhang1 yz798@cam.ac.uk

Tong Xia1∗ tx229@cam.ac.uk

Aaqib Saeed2 a.saeed@tue.nl

Cecilia Mascolo1 cm542@cam.ac.uk
1University of Cambridge, UK 2Eindhoven University of Technology, The Netherlands
∗Corresponding author

Abstract
The high incidence and mortality rates associ-
ated with respiratory diseases underscores the
importance of early screening. Machine learn-
ing models can automate clinical consultations
and auscultation, offering vital support in this
area. However, the data involved, spanning
demographics, medical history, symptoms, and
respiratory audio, are heterogeneous and com-
plex. Existing approaches are insufficient and
lack generalizability, as they typically rely on
limited training data, basic fusion techniques,
and task-specific models. In this paper, we pro-
pose RespLLM, a novel multimodal large lan-
guage model (LLM) framework that unifies text
and audio representations for respiratory health
prediction. RespLLM leverages the extensive
prior knowledge of pretrained LLMs and en-
ables effective audio-text fusion through cross-
modal attentions. Instruction tuning is em-
ployed to integrate diverse data from multiple
sources, ensuring generalizability and versatil-
ity of the model. Experiments on five real-world
datasets demonstrate that RespLLM outper-
forms leading baselines by an average of 4.6%
on trained tasks, 7.9% on unseen datasets, and
facilitates zero-shot predictions for new tasks.
Our work lays the foundation for multimodal
models that can perceive, listen to, and under-
stand heterogeneous data, paving the way for
scalable respiratory health diagnosis.

Keywords: Respiratory health, multimodal
learning, audio, large language models

Data and Code Availability We use the follow-
ing open data: (1) Covid-19 Sounds dataset (Xia
et al., 2021) (2) UK COVID-19 Vocal Audio
Dataset (Coppock et al., 2024) (3) ICBHI Respi-

I am a                             with no significant past
medical history. I am experiencing respiratory
symptoms including                                           
                             .

Could you assist me in evaluating potential
respiratory diseases I might have?

This is the recording of my             sounds.

35-year-old man

cough

tightness in the chest and 
a persistent cough

Based on your symptoms and the sound of
your cough, you may be exhibiting signs of 
Chronic Obstructive Pulmonary Disease 
(COPD). A further clinical assessment is
recommended.

Sure. To get a better understanding, could
you provide more information?

Figure 1: Automated consultation and auscultation
for respiratory health screening.

ratory Sound Database (Rocha et al., 2019) (4)
Coswara Dataset (Bhattacharya et al., 2023) (5)
KAUH lung sounds dataset (Fraiwan et al., 2021).
The code can be found at our Github Repository.

Institutional Review Board (IRB) This study
obtained IRB approval by the Ethics Committee of
the Department of Computer Science and Technol-
ogy at the University of Cambridge to work with the
public and controlled access data described.

1. Introduction

Respiratory diseases are the third leading cause
of death worldwide, highlighting the critical need
for early and accessible respiratory health screen-
ing (Labaki and Han, 2020). Clinical assessment of

© 2024 Y. Zhang, T. Xia, A. Saeed & C. Mascolo.

https://github.com/evelyn0414/RespLLM


RespLLM

such diseases typically begins with gathering personal
information (consultation), including demographics,
medical history, symptoms, and other relevant de-
tails (hereafter collectively referred to as DMS). In
addition, clinicians listen to respiratory sounds (aus-
cultation) as a non-invasive method of screening, be-
fore proceeding to more invasive and costly examina-
tions (Reyes et al., 2024). Consequently, automating
both the consultation and auscultation processes us-
ing machine learning (ML), as illustrated in Figure 1,
can significantly enhance early screening by increas-
ing efficiency, accessibility, and affordability.

Considering that the DMS and audio data are dif-
ferent modalities, presenting heterogeneous informa-
tion, multimodal ML approaches that can effectively
integrate them are needed. Early efforts have been
made in this direction (Xia et al., 2023; Kim et al.,
2024; Han et al., 2021); nevertheless, limitations hin-
der their application in real-world diagnostic sce-
narios. First, these models are typically small-scale
and trained on limited data, restricting their ability
to effectively learn from high-dimensional audio sig-
nals and unstructured DMS data. Second, the fu-
sion of DMS and audio remains inadequate, which
may reduce model performance. They commonly con-
catenate audio representations with DMS representa-
tions, encoded either into categorical vectors using a
pre-defined mapping (Han et al., 2021) or into word
embeddings (Kim et al., 2024). Such concatenation
overlooks the differences in their embedding spaces
and interrelationship between these two types of data.

More importantly, existing models are task- and
dataset-specific, which hinders their ability to gener-
alize. Traditional machine learning models rely on
the IID (Independent and Identically Distributed) as-
sumption, and when the data distribution shifts, their
performance tends to degrade. However, respiratory
health data for model training is often limited (Kim
et al., 2024), and in real-world deployments, data
ranging from DMS to audio, as well as the respi-
ratory status included, can differ significantly from
the training data. For example, a model trained to
predict asthma may be required to predict COVID-
19 status at the inference stage. Highly generalized
models capable of handling these changes are neces-
sary but currently lacking.

To overcome these limitations and progress to-
wards the envisioned applications depicted in Fig-
ure 1, this paper puts forward a unique approach that
harnesses the power of pre-trained LLMs to simul-
taneously interpret DMS and audio for respiratory
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Figure 2: Multimodal models for respira-
tory health prediction. (a) Existing
concatenation-based fusion method. (b)
Our LLM-based fusion method.

health screening. The high-level concept of the pro-
posed method is illustrated in Figure 2b. Unlike ex-
isting methods, which are constrained by limited data
and model scale, our approach leverages LLMs exten-
sively trained on large corpora, including medical ma-
terials (Goel et al., 2023), to extend model capacity
beyond the available respiratory training data. For
effective multimodal fusion, we generate sequences of
audio representations from a pre-trained encoder and
combine them with DMS text embeddings as a unified
input to the LLM. This enables coherent integration
of the two modalities through multi-layer and multi-
head attention mechanisms. To enhance the model
generalizability, we curate multiple data sources for
training and create instructions applicable to a va-
riety of tasks that combine DMS and audio. This
approach equips the model with zero-shot inference
capabilities for new datasets and unseen tasks.

Our contributions can be summarized as follows:

1. To the best of our knowledge, this work presents,
for the first time, the use of LLMs to jointly
model DMS and audio data for respiratory
health screening. The proposed multimodal
LLM, RespLLM, can comprehensively perceive,
listen to, understand heterogeneous inputs and
then diagnose respiratory health.

2. We curate a large instruction-tuning set combin-
ing task prompts, DMS, and audio to optimize
the proposed model. This approach ensures the
model remains versatile (one model for multiple
tasks) and generalized (performing well on new
datasets or tasks).

3. We conduct extensive experiments on multiple
open datasets. Results demonstrate the superi-

2



RespLLM

ority of our model over existing methods, show-
ing notable improvement in both trained and un-
seen tasks, along with the robustness of our ap-
proach in integrating different LLM models.

2. Related Work

2.1. ML for Respiratory Health

In clinical practice, respiratory health is assessed
through various clinical examinations such as spirom-
etry, auscultation, chest X-rays, plethysmography,
and computed tomography scans (Reyes et al., 2024).
Auscultation, combined with personal DMS informa-
tion, is among the most comfortable and affordable
approaches. Using an electronic stethoscope or a mi-
crophone, respiratory sounds, such as coughing and
breathing, produced by airflow in the respiratory sys-
tem can be easily recorded. These recordings contain
valuable physiological information related to breath-
ing difficulties, reduced oxygen saturation, and other
conditions (Xia et al., 2022). Therefore, modeling
respiratory audio and DMS data holds significant po-
tential for ubiquitous respiratory health monitoring.

Traditionally, audio signal processing techniques
were used to extract acoustic features that help dis-
tinguish between different respiratory conditions (Ma
et al., 2022; Islam et al., 2018). Recently, deep learn-
ing (DL) has significantly advanced acoustic model-
ing by automatically capturing complex relationships
from raw audio data or spectrograms. This advance-
ment has led to high-performing applications, from
detecting abnormal lung sounds to diagnosing condi-
tions such as the flu and pulmonary diseases (Gairola
et al., 2021; Fraiwan et al., 2022; Srivastava et al.,
2021). When combined with additional information
like DMS, DL-driven respiratory health prediction
models demonstrate further performance improve-
ments (Han et al., 2021; Xia et al., 2023; Kim et al.,
2024; Moummad and Farrugia, 2023).

However, current methods to represent and fuse
DMS and audio in the field of respiratory health re-
main simple and may fail to capture all the rele-
vant information. DMS is typically encoded either
by mapping variables into a uniform vector using a
predefined dictionary (Figure 3a) (Han et al., 2021;
Xia et al., 2023) or by extracting text embeddings
from the unstructured data (Figure 3b) (Kim et al.,
2024; Moummad and Farrugia, 2023). This represen-
tation is then concatenated with audio from a deep
learning encoder, ignoring the differences and com-
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age
"16-19": 1,
"80-89": 8,

... ...
fever
"no": 0,
"yes": 1,

DMS

Text 
Encoder
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Age: 20-29; Gender: F; ...

Figure 3: Existing DMS encoding methods. (a)
Pre-defined mapping. (b) Text embedding.

plex relationship between the two, limiting the poten-
tial of DL for health prediction. In the related field
of chest X-ray modeling, more advanced multimodal
techniques such as LSTM-based fusion (Hayat et al.,
2022), cross-modal attention (Wang et al., 2018), and
multimodal pre-training (Moon et al., 2022) have
been explored. In this paper we explore how similar
approaches could be beneficial to audio and DMS.

Meanwhile, existing methods typically rely on
small-scale models trained on limited data, which
struggle to generalize to new tasks and datasets. This
paper aims to address this gap by developing a gen-
eralizable multimodal approach through diverse in-
struction tuning, leveraging extensively pretrained
large language models.

2.2. LLMs for Health

Recently-emerged LLMs have demonstrated remark-
able capabilities in various health diagnostic applica-
tions (Singhal et al., 2023; Liévin et al., 2024). This is
primarily due to their pretraining on enormous and
diverse datasets, including medical literature, clini-
cal guidelines, research papers, and general knowl-
edge (Goel et al., 2023). Such pretraining enables
LLMs to understand medical terminology, concepts,
and associations relevant to health diagnostics.

There is also a growing trend in extending LLMs,
which are inherently language models, to handle mul-
timodal data in a unified manner (Wu et al., 2023;
Qiu et al., 2023). This capability is typically achieved
by combining prompts, modality-specific encoders,
and LLMs within a single framework (Moor et al.,
2023; Yu et al., 2023; Liu et al., 2024). For exam-
ple, Liu et al. leveraged LLMs to interpret electro-
cardiography signals and perform zero-shot diagnosis.
To further enhance generalizability, instruction tun-
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Please classify whether this patient
has {COVID-19}.

Gender: {Female}. Age: {45-64}.
Patient presents with {no} medical

history. Patient presents with
{fever and headache}. 

Text Em
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Figure 4: The model architecture of RespLLM. Text embeddings from task prompts and personal
DMS, along with audio embeddings from respiratory sounds, are sequentialized as input for the
LLM consisting of multiple transformer blocks.

ing has emerged as a promising approach for adapting
LLMs to various tasks and domains (Aw et al., 2023).
In this work, we make the first effort to leverage re-
cent advancements in multimodal LLMs and curate
an instruction-tuning dataset using diverse sources
for generalized respiratory health prediction.

3. Methodology

Figure 2b illustrates our proposed framework, a mul-
timodal LLM that can model DMS and respiratory
audio simultaneously. In this section, we begin by
elaborating on the model architecture design. Then
we delve into how we curate the instruction tuning
dataset to train this model.

3.1. Model Architecture

Our overall model architecture is shown in Fig-
ure 4. Given the DMS Xd and the respiratory au-
dio signal Xa, our goal is to provide a screening re-
sult/recommendation in response to the question in
the prompt Xp. To achieve this, our model mainly
consists of three modules: a text embedder that maps
Xp and Xd into text token embeddings, an audio en-
coder with a projector to map Xa into audio embed-
dings, and an LLM to fuse all the given information
for respiratory health screening. These modules are
specified as follows.

Text embedding. The text embedding module
will first split the given prompt Xp and DMS Xd

into sequence of tokens using its tokenizer, and then
map the words into a sequence of word embeddings,
denoted by Zp ∈ RLp×S and Zd ∈ RLd×S , where Lp

and Ld are the lengths of the text and S is the dimen-
sion of the word embeddings. For consistency, we use
the same tokenizer and word embeddings from the
LLM that is used in the later stage. In this sense,
S is also the dimension of the hidden state in the
transformer blocks of the used LLM.

Audio Encoder with Projector. Given the high
dimensionality and complexity of the audio data, we
adapt a pre-trained audio encoder to obtain audio
embeddings for Xa (Zhang et al., 2024). Each au-
dio sample is first transformed into a spectrogram,
which is then divided into small patches of equal
size to derive embeddings. We feed the resulting se-
quence of La embeddings into the LLM, denoted by
za ∈ RLa×A, where A is the dimension of the orig-
inal audio embeddings. As the LLM has a different
hidden embedding space of dimension S, we need to
efficiently align the audio embeddings with word em-
beddings. Following insights from previous work (Ma
et al., 2024), we use a simplistic linear layer as the
projector P(·). Then, we have the final audio embed-
dings Za = P(za), where Za ∈ RLa×S .

LLM and LoRA. For the three distinct embed-
ding Zp, Zd, and Za, which correspond to task
prompt, DMS, and audio information respectively, we
first combine them into a longer sequence of embed-
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dings. After this, we add positional embeddings to
the resulting sequence, producing the final embed-
ding Z ∈ RL×S , L = Lp + Ld + La. Note that we
use the same positional embedding approach as that
employed by the chosen LLM model. This combined
embedding Z is then fed into the LLM for further
processing.

Since the LLM consists of multiple transformer
blocks as shown by the blue shaded box in Figure 4,
each containing several self-attention operations pa-
rameterized by Wq,Wk and Wv, the three types of
information are deeply fused. The final transformer
block outputs a sequence of hidden states with a
length of L, which are then flattened across the tem-
poral dimension to generate a single vector represen-
tation. This vector is then passed through a linear
layer with a Softmax function to produce the final
output, yielding binary health predictions. To mit-
igate the risk of hallucinations in the original LLM
output, we replace the original linear layer with a ran-
domly initialized one containing two output nodes,
representing the answer, either ‘Yes’ or ‘No’, to the
question in the task prompt.

To balance between preserving the LLM’s prior
knowledge from large-scale pretraining and adapting
it to respiratory health prediction tasks, we choose
to update only part of the pretrained parameters.
LoRA (Low-Rank Adaptation) (Hu et al., 2021) is a
parameter-efficient fine-tuning method that reduces
the computational cost of updating large models. As
shown in Figure 4, we apply LoRA to the query (Wq)
and value (Wv) mapping modules in the transformer
blocks of the LLM, while keeping the rest of the pa-
rameters frozen.

3.2. Model Training

Data Curation. To increase the generality of our
method, we propose to combine multiple data re-
sources for training. Those data can differ in the au-
dio modalities, DMS formats and the category of res-
piratory conditions. To unify them for model train-
ing, we design contextualized instructions containing
task prompts, the description of DMS and the cor-
responding audio information. The templates of Xp

and Xd are formulated as described below, with ex-
amples provided in Figure 5.

I. The task prompt Xp is a diagnostic query with
respect to the condition that can be predicted from
the given audio and DMS. It is formulated as:

“Dataset description: This data comes from
the {D}. Task description: classify whether
the participant has {C} given the following
information and audio of the person’s {T}
sounds. Please output 1 for {C1}, and 0 for
{C2}. ”

Here, D distinguishes the data resource, T presents
the sound type, and C denotes the condition to be
predicted from C1 and C2 restricts the output space.

II. For the text input of DMSXd, we use the following
template:

“Gender: {G}. Age: {A}. Patient presents
with {M} medical history conditions. Patient
presents with the following respiratory symp-
toms: {S}. Recorded location: {L}. ”

Here, G denotes the gender, A represents age, M spec-
ifies medical history, and S is the list of symptoms. L
represents the location where the audio was recorded
for lung sounds. For any missing or non-applicable
data field, the corresponding description is omitted.

Instruction Tuning. Since various data resources
have been unified into instructions, we can now shuf-
fle these instructions from multiple sources to create
batches for model training. To make the most of the
pre-trained knowledge in the audio encoder and the
LLM, we will only train the projector, the LoRA pa-
rameters, and the final fully connected layer for the
LLM in our model, as shown in Figure 4. For the ob-
jective function, we use the cross-entropy loss, com-
paring the output of the LLM with the actual answer
to the diagnostic question in the prompt.

Zero-shot Prediction. As mentioned earlier,
since the diagnostic task and personal DMS are for-
mulated in text, our model can easily extend to new
data and unseen respiratory conditions. This allows
for zero-shot inference without requiring any param-
eter changes when deploying to a new domain.

4. Experiments

In this section, we conduct extensive experiments
with real-world data to answer the following ques-
tions:

• RQ1: How does our model perform compared
to the state-of-the-art baselines for respiratory
health prediction?

• RQ2: How well does our model generalize to
new data and unseen tasks?

5



RespLLM

Table 1

Task Text Audio Answer
S1 (Training) Task prompt: Dataset description: This data comes from the UK COVID-19 Vocal Audio Dataset. 

Task description: classify whether the participant has COVID-19 given the following information 
and audio of the person's exhalation sounds. Please output 1 for COVID19, and 0 for non-
COVID19.

DMS text: Gender: Female. Age: 45-64. Patient presents with the following medical history 
conditions: asthma. Patient presents with the following respiratory symptoms: cough, fatigue, 
headache. 

1

S6 (Training) Task prompt: Dataset description: This data comes from the COVID-19 Sounds dataset. Task 
description: classify whether the person is a smoker or not given the following information and 
audio of the person's cough sounds. Please output 1 for smoker, and 0 for non-smoker.

DMS text: Gender: Female. Age: 50-59. Patient presents with no medical history conditions. 
Patient presents with no obvious respiratory symptoms.

0

S7 (Training) Task prompt: Dataset description: This data comes from the ICBHI Respiratory Sound Database 
Dataset. Task description: classify whether the person has Chronic obstructive pulmonary 
disease (COPD) given the following information and audio of the person's lung sounds. Please 
output 1 for COPD, and 0 for healthy. 

DMS text: Gender: M. Age: 65. Record location: right posterior chest.

1

T4 (Testing) Task prompt: This data comes from the Coswara Covid-19 dataset.  Task description: classify 
whether the participant has COVID-19 given the following information and audio of the person's 
breathing-deep sounds. Please output 1 for COVID19, and 0 for non-COVID19.

DMS text: Gender: male. Age: 35. Patient presents with the following respiratory symptoms: 
cold. 

0

T6 (Testing) Task prompt: Dataset description: This data comes from the KAUH lung sound dataset, 
containing lung sounds recorded from the chest wall using an electronic stethoscope. Task 
description: classify whether the person has asthma given the following information and audio of 
the person's lung sounds. Please output 1 for asthma, and 0 for healthy.

DMS text: Gender: F. Record location: posterior right upper.

1

Figure 5: Examples of instructions used in our work. The variables that differ across samples and
datasets are highlighted. For any missing data in a field, the corresponding description is omitted.

Table 1: Summary of source and target
datasets and tasks used in this study.
The five datasets are UK COVID, COVID-
19 Sounds, ICBHI, Coswara, and KAUH.
For task IDs, S1–S7 refer to the source
tasks, and T1–T6 refer to the target tasks.
In audio types, ‘s’ is short for shallow, ‘h’
for heavy, and ‘d’ for deep.

Data ID Label Audio Type #Train/Test

1 S1 Covid Exhalation 1500/1000
1 S2 Covid Cough 1500/1000
2 S3 Covid Breath 1162/324
2 S4 Covid Cough 1162/324
2 S5 Smoker Breath 2570/1419
2 S6 Smoker Cough 2570/1419
3 S7 COPD Lung sounds 462/366

4 T1 Covid Cough-s -/100
4 T2 Covid Cough-h -/100
4 T3 Covid Breath-s -/40
4 T4 Covid Breath-d -/40
5 T5 COPD Lung sounds -/38
5 T6 Asthma Lung sounds -/116

• RQ3: How do the model design and the choice
of LLMs impact the performance of our method?

4.1. Datasets and Tasks

We use five open respiratory audio datasets for
our experiments, featuring recordings of coughing,
breathing, and lung sounds related to respiratory
health statuses like smoking, COVID-19, and other
respiratory diseases. These datasets also contain rich
DMS information including age, gender, medical his-
tories, symptoms, and recording locations for lung
sounds. Using these datasets, we define 13 respira-
tory health tasks, as shown in Table 1. Among these,
only the source tasks are used for model training,
while the others are reserved for testing. Examples
of the instructions we generated by combining task
prompts, DMS, and audio recordings are illustrated
in Figure 5.

4.2. Experimental Setup

For comparison, we implement both single-modal and
multimodal baselines. Regarding single-modal meth-
ods, we compare to Audio, which fine-tunes the pre-
trained audio encoder alongside a linear classifier for
respiratory condition prediction (Xia et al., 2021).
For DMS-only methods, we consider to use the hard
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Table 2: Performance when training and testing on the same data sources (AUROC). Baselines
are task-specific (trained and tested on each single task), while RespLLM is trained collectively
with all tasks. Best results are bold and the second best are underlined.

Task S1→S1 S2→S2 S3→S3 S4→S4 S5→S5 S6→S6 S7→S7 Avg.

Single-modal Audio 0.6025 0.6729 0.5828 0.6260 0.5517 0.6247 0.9575 0.6597
DMS - Hard 0.7626 0.7521 0.6427 0.6427 0.5485 0.5485 0.8341 0.6759
DMS - Soft 0.9126 0.8900 0.7406 0.7406 0.5594 0.5594 0.9938 0.7709

Multimodal Fusion - Hard 0.5936 0.6905 0.6171 0.6747 0.5714 0.6250 0.9845 0.6795
Fusion - Soft 0.8668 0.8954 0.6997 0.7390 0.5692 0.6336 0.9981 0.7717
RespLLM (Ours) 0.9244 0.9002 0.7958 0.7840 0.6189 0.6274 1.0000 0.8072

Table 3: Performance of zero-shot prediction on new datasets (AUROC). Sx refers to the train-
ing source task, differing between baselines and our RespLLM method. For baselines, Sx presents
the source task used for transferring to the target task (i.e., S2&4→T1, S2&4→T2, S1&3→T3,
S1&3→T4, S7→T5). When multiple models can be transferred, the average performance is re-
ported. For RespLLM, Sx refers to our trained model with all source task data.

Task Sx→T1 Sx→T2 Sx→T3 Sx→T4 Sx→T5 Avg. Sx→T6

Single-modal Audio 0.6076 0.4940 0.5963 0.4875 0.5823 0.5535 -
DMS - Hard 0.4956 0.4956 0.6312 0.6312 0.5375 0.5582 -
DMS - Soft 0.5834 0.5834 0.5525 0.5525 0.5312 0.5606 -

Multimodal Fusion - Hard 0.5528 0.5276 0.6288 0.5550 0.5708 0.5670 -
Fusion - Soft 0.6190 0.5928 0.6288 0.6400 0.5542 0.6070 -
RespLLM (Ours) 0.6424 0.6284 0.6525 0.6750 0.6750 0.6547 0.5865

encoding in Figure 3a and soft text embedding in
Figure 3b to fit a linear model, namely DMS-hard
and DMS-soft , respectively. Based on these two
encoding methods for DMS, we compare to the mul-
timodal method as illustrated in Figure 2a (concate-
nation fusion), and name them Fusion-hard (Han
et al., 2021) and Fusion-soft (Kim et al., 2024), as
our multimodal baselines.

The audio encoder used in both the baselines
and our method is the pre-trained OPERA-CT
model (Zhang et al., 2024), a hierarchical token-
semantic audio transformer. It processes an 8-second
audio input (padded or cropped) into a spectrogram
of size 256×64 and output embeddings of 64 patches,
each with a dimension of 768. The LLM model that
we modify is OpenBioLLM-8B1 which is an open-
source LLM designed for the biomedical domain. The
instruction tuning is completed on a single A-100
GPU. For all tasks, we use AUROC as the metric to
report the health condition prediction performance.

1. https://huggingface.co/aaditya/
Llama3-OpenBioLLM-8B

4.3. Results

Health Prediction Performance (RQ1). To an-
swer RQ1, we first examine the performance of our
model and the baselines when testing on training
datasets (held-out testing set). Since the baselines
are task-specific by design, they are trained and
tested on the same task, whereas our model utilizes
all data resources, resulting in a single RespLLM ca-
pable of performing well on multiple tasks. The re-
sults are summarized in Table 2, with Confidence In-
tervals (CIs) reported in Table 7 in the appendix.
Among the seven evaluated tasks, our model outper-
forms the state-of-the-art baselines on six tasks, with
the average AUROC across all seven tasks surpass-
ing the best baseline by 4.6% (0.8072 vs. 0.7717). It
can also be observed that the fusion baselines com-
pared cannot consistently outperform their single-
modal counterparts, and their average AUROCs are
very close. This suggests that the fusion methods
are insufficient. In contrast, our model demonstrates
superiority by effectively fusing DMS and audio infor-
mation via the LLM for respiratory health prediction.
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Generalizability (RQ2). To demonstrate our
model’s generalizability and address RQ2, we eval-
uate its performance not only on in-distribution data
but also on new, unseen datasets and tasks. Specif-
ically, we train the models on source task data and
test them on target tasks. As shown in Table 1 and
Figure 5, both the types of sounds and the infor-
mation from DMS vary between source and target
tasks. Our model can be directly tested, while for the
baselines, we report cross-task transfer performance
in cases where both the modality and labels match
(e.g., both source and target tasks involve predicting
COVID-19 from cough sounds). Since no fine-tuning
is applied, this constitutes zero-shot prediction, with
the results summarized in Table 3.

Zero-shot transfer prediction shows a degraded per-
formance compared to Table 2, due to changes in
data sources, audio types, and DMS information. De-
spite this challenge, our model consistently outper-
forms all compared baselines, with the average AU-
ROC surpassing the best baseline by 7.9% (0.6547
vs. 0.6070). This demonstrates the stronger gen-
eralizability of our method over the baselines. No-
tably, in T6, where asthma is a new class not in-
cluded in the training data, none of the baselines can
predict this condition (e.g., a model trained to dis-
tinguish COVID/non-COVID in S1 cannot differen-
tiate asthma from healthy cases). In contrast, our
model achieves an AUROC of 0.5865, comparable to
the baselines’ average performance on T1-5. This ca-
pability largely stems from our instruction-tuning ap-
proach, which effectively retrieves relevant knowledge
from the pretrained LLM for zero-shot generalization.

Effect of Training and Model Design (RQ3).
To further validate the superiority of our framework
with cross-data training, we perform several ablation
studies. We combine S1-7 into a multi-label task and
use all data to train the multimodal baselines for di-
rect comparison of different fusion methods: concate-
nation fusion as used in the baseline, add-on fusion
from (Blandfort et al., 2019), and cross-attention fu-
sion from (Wang et al., 2022). The results for normal
testing on source tasks and zero-shot prediction on
target tasks are shown in Table 4. Concatenation out-
performs addition, as the audio and text embeddings
are in very different spaces, and simply adding them
may confuse the model. Concatenation also outper-
forms cross-attention fusion, likely because attention
introduces additional parameters to train, which in-
creases the data demand. Our model outperforms all

Table 4: Comparison of fusion methods using
all data to train a single model. Source
Avg. refers to the average AUROC of S1-
7, and Target Avg. refers to the average
AUROC of T1-5.

Method Source Avg. Target Avg.

Fusion - Concat 0.7726 0.6434
Fusion - Add 0.6913 0.5905
Fusion - CrossAttn 0.7392 0.6260

RespLLM (Ours) 0.8072 0.6547

these ablations due to the use of more complex archi-
tectures with pretrained parameters and knowledge.

We also compare different open-source LLMs
within our framework, with their performance sum-
marized in Table 5. The four LLMs show similar
AUROCs across tasks, demonstrating the robustness
of our training approach. Notably, OpenBioLLM
achieves a higher AUROC in the zero-shot setting
on the target tasks, likely due to its specialized pre-
training on medical corpora, enhancing its diagnostic
knowledge for generalized health screening.

Lastly, to gain insights for the contribution of text
and audio signals in the model, we also conduct ab-
lation experiments by removing the audio or DMS
components of RespLLM. The results in Table 6 show
that removing either degrades performance. Notably,
removing audio impacts new datasets and unseen
tasks more, while removing DMS causes a greater
drop in accuracy on the trained datasets. This
suggests that while textual information greatly con-
tributes to the model performance when training and
testing on the same data sources, relying solely on
text can lead to overfitting to spurious correlations
in the training data, limiting generalizability to new
data or tasks. Incorporating audio as an additional
modality helps mitigate this issue. A more detailed
analysis is provided in the appendix.

5. Discussion

In this work, we introduced RespLLM, the first audio-
text multimodal LLM for respiratory health predic-
tion. The model not only outperforms state-of-the-
art baselines in typical in-distribution testing but
also demonstrates stronger generalizability in zero-
shot predictions on new datasets and tasks that it
was not exposed to during training.
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Table 5: Performance of different LLMs in our
framework. Source Avg. refers to the
average AUROC of S1-7, and Target Avg.
refers to the average AUROC of T1-6.

Model Source Avg. Target Avg.

Gemma (2B) 0.7772 0.6255
Phi-3.5 (4B) 0.8007 0.6097
Mistral (7B) 0.8005 0.6132
LLaMA (7B) 0.8016 0.6322
LLaMA3 (8B) 0.8095 0.6372

OpenBioLLM (8B) 0.8072 0.6449

Table 6: Performance when removing DMS
and audio components of RespLLM.
Source Avg. refers to the average AUROC
of S1-7, and Target Avg. refers to the aver-
age AUROC of T1-6.

Model Source Avg. Target Avg.

RespLLM w/o audio 0.7855 0.5403
RespLLM w/o DMS 0.5697 0.6043

RespLLM 0.8072 0.6449

We anticipate that the rise of multimodal LLMs
will create exciting opportunities for modality fu-
sion (via Transformers) and for grounding models in
heterogeneous data sources (via instruction tuning).
Thus, our work serves as a foundational step toward
more generalist medical AI models.

Limitations. This work presents a proof-of-
concept. As such, RespLLM is not intended for clini-
cal use and should not be considered safe for such ap-
plications. The experiments conducted in this study
are limited to respiratory conditions such as COVID-
19, COPD, and asthma. We have not tested the
model performance on other conditions, such as the
flu, due to the limited data available at the moment.
However, we hope that such data will become more
available in the future, enabling further research.

Future Work To mitigate the hallucinations that
frequently occur in large language models, we re-
placed the final linear layer in the original LLM with
a custom linear layer that only outputs ‘Yes’ or ‘No’
for a given condition. An exciting direction for fu-
ture work would be to explore the use of the full lan-

guage model for more comprehensive diagnostics and
reasoning in respiratory conditions while maintaining
trustworthiness. Additionally, we plan to integrate
more biosignal modalities, such as photoplethysmog-
raphy signals and body temperature dynamics, which
could provide a more holistic approach to respiratory
health screening.
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Appendix A. Data description

COVID-19 Sounds (Xia et al., 2021) . The
COVID-19 Sounds dataset consists of 53,449 audio
samples (over 552 hours in total) crowd-sourced from
36,116 participants through the COVID-19 Sounds
app. This dataset is comprehensive in terms of demo-
graphics and spectrum of health conditions. It also
provides participants’ self-reported COVID-19 test-
ing status with 2,106 samples tested positive. It con-
sists of three modalities including breathing, cough,
and voice recordings. Only breathing and cough
modalities are used in this paper.

UK COVID-19 (Coppock et al., 2024). The
UK COVID-19 Vocal Audio Dataset is designed for
the training and evaluation of machine learning mod-
els that classify SARS-CoV-2 infection status or asso-
ciated respiratory symptoms using vocal audio. The
UK Health Security Agency recruited voluntary par-
ticipants through the national Test and Trace pro-
gramme and the REACT-1 survey in England from
March 2021 to March 2022, during dominant trans-
mission of the Alpha and Delta SARS-CoV-2 vari-
ants and some Omicron variant sublineages. Au-
dio recordings of volitional coughs, exhalations, and
speech (speech not included in open access version,
nor used in this paper) were collected in the ‘Speak
up to help beat coronavirus’ digital survey alongside
demographic, self-reported symptom and respiratory
condition data, and linked to SARS-CoV-2 test re-
sults.

ICBHI (Rocha et al., 2019). The ICBHI Respi-
ratory Sound Database contains audio samples, col-
lected independently by two research teams in two
different countries, over several years. Ethical ap-
proval was obtained from the ethics committees of
the appropriate institutions.

Most of the database consists of audio samples
recorded by the School of Health Sciences, University
of Aveiro (ESSUA) research team at the Respiratory
Research and Rehabilitation Laboratory (Lab3R),
ESSUA and at Hospital Infante D. Pedro, Aveiro,
Portugal. The second research team, from the Aris-
totle University of Thessaloniki (AUTH) and the Uni-
versity of Coimbra (UC), acquired respiratory sounds
at the Papanikolaou General Hospital, Thessaloniki
and at the General Hospital of Imathia (Health Unit
of Naousa), Greece. The database consists of a to-
tal of 5.5 hours of recordings in 920 annotated audio
samples from 126 subjects.

Coswara (Bhattacharya et al., 2023).
The Coswara dataset contains respiratory sounds
recorded between April 2020 and February 2022
from 2635 individuals (1819 SARS- CoV-2 negative,
674 positive, and 142 recovered subjects). The
respiratory sounds contained nine sound categories
associated with variants of breathing, cough and
speech. The metadata contains demographic infor-
mation associated with age, gender and geographic
location, as well as the health information relating
to the symptoms, pre-existing respiratory ailments,
comorbidity and SaRS-CoV-2 test status.

KAUH (Fraiwan et al., 2021). The KAUH
dataset includes sounds from seven ailments (i.e.,
asthma, heart failure, pneumonia, bronchitis, pleural
effusion, lung fibrosis, and chronic obstructive pul-
monary disease (COPD) as well as normal breath-
ing sounds. The dataset contains the audio record-
ings from the examination of the chest wall at var-
ious vantage points using an electronic stethoscope.
The stethoscope placement on the subject was de-
termined by the specialist physician performing the
diagnosis. Each recording was replicated three times
corresponding to various frequency filters that em-
phasize certain bodily sounds. The dataset can be
used for the development of automated methods that
detect pulmonary diseases from lung sounds or iden-
tify the correct type of lung sound.
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Table 7: Performance when training and testing on the same data sources (AUROC). Baselines
are task-specific (trained and tested on each single task), while RespLLM is trained collectively
with all tasks. Best results are bold.

Task S1→S1 S2→S2 S3→S3 S4→S4 S5→S5 S6→S6 S7→S7

Single-modal Audio 0.60 (0.57 - 0.63) 0.67 (0.64 - 0.71) 0.57 (0.50 - 0.64) 0.61 (0.56 - 0.68) 0.55 (0.51 - 0.59) 0.62 (0.59 - 0.65) 0.96 (0.90 - 1.00)
DMS - Hard 0.76 (0.74 - 0.79) 0.75 (0.73 - 0.78) 0.64 (0.59 - 0.68) 0.64 (0.59 - 0.68) 0.55 (0.52 - 0.59) 0.55 (0.52 - 0.59) 0.83 (0.70 - 0.95)
DMS - Soft 0.91 (0.89 - 0.94) 0.89 (0.87 - 0.91) 0.74 (0.69 - 0.79) 0.74 (0.69 - 0.79) 0.56 (0.53 - 0.60) 0.56 (0.53 - 0.60) 0.99 (0.98 - 1.00)

Multimodal Fusion - Hard 0.62 (0.58 - 0.65) 0.68 (0.65 - 0.72) 0.63 (0.57 - 0.69) 0.59 (0.54 - 0.66) 0.57 (0.53 - 0.60) 0.62 (0.57 - 0.64) 0.98 (0.95 - 1.00)
Fusion - Soft 0.89 (0.86 - 0.90) 0.87 (0.84 - 0.89) 0.73 (0.68 - 0.78) 0.72 (0.67 - 0.77) 0.58 (0.55 - 0.62) 0.63 (0.59 - 0.65) 1.00 (1.00 - 1.00)
RespLLM (Ours) 0.92 (0.90 - 0.94) 0.90 (0.88 - 0.92) 0.79 (0.74 - 0.84) 0.78 (0.72 - 0.83) 0.61 (0.58 - 0.65) 0.62 (0.59 - 0.66) 1.00 (1.00 - 1.00)

Appendix B. Implementation Details

B.1. RespLLM

Audio encoder. The audio encoder that we adopt
is the pre-trained OPERA-CT model (Zhang et al.,
2024). It is a hierarchical token-semantic audio trans-
former (HTS-AT) model trained with a contrastive
learning objective of instance discrimination on res-
piratory sounds. All audio recordings are padded
or cropped to 8 seconds, resampled to 16 kHz and
merged into a mono channel. They are then trans-
formed into spectrograms using 64 Mel filter banks
with a 64 ms Hann window that shifts every 32 ms,
resulting in a spectrogram of 126× 64 dimension. It
output patch embeddings of 64 patches, which is in-
put into the LLM as 64 tokens after the alignment
module.

LLM and LoRA. We use the OpenBioLLM
model, which has 8B parameters and uses a LLaMA3
architecture. It was developed by Saama AI Lab and
released in May 2024 and achieves state-of-the-art
performance across various biomedical tasks. To effi-
ciently adapt the LLM model to our tasks, we employ
a LoRA module of rank r = 16 and α = 32.

For the ablation study, we also explored LLaMA-
7B (Touvron et al., 2023), LLaMA3-8B2, Mis-
tral (Jiang et al., 2023), Gemma-2(2B)3 and Phi-3.54.

B.2. Baselines

We use the pre-traiend BERT (Devlin, 2018) for
the wording embeddings in the soft fusion baselines,
which are of the same dimension of the audio embed-
dings.

2. https://ai.meta.com/blog/meta-llama-3/
3. https://huggingface.co/google/gemma-2-2b
4. https://huggingface.co/microsoft/Phi-3.

5-mini-instruct

Appendix C. Additional Results

We report 95% confidence intervals using bootstrap
CI (Carpenter and Bithell, 2000) for the performance.
The CIs are summarized in Table 7.

Table 8 and Table 9 summarizes the performance
comparing different fusion methods in our framework.
The results are averaged to get the average perfor-
mance in Table 4.

Table 10 and Table 11 summarizes the performance
comparing different LLMs in our framework. The
results are averaged to get the average performance
in Table 5.

To further illustrate the limitations of single-
modality models and underscore the value of our
multi-modal approach, Table 12 gives some exam-
ples of mispredictions. For training data with clearly
indicative symptoms, the text-only model can per-
form reasonably well, as it may recognize common
patterns associated with positive cases. This helps
the text-only model to correctly predict example 1
where the audio-only model fails. However, this can
lead to overfitting, where the model overly relies on
subjective symptom descriptions and begins predict-
ing COVID-19 positive for all cases reporting sim-
ilar symptoms and negative for anyone not report-
ing symptoms. Such over-reliance is problematic, as
symptom descriptions vary significantly between in-
dividuals and can be highly subjective. By incor-
porating audio data, we introduce a more objective
source of information, capturing physiological cues
like coughing patterns, breathing irregularities, and
vocal strain, which are less prone to subjective in-
terpretation. This integration helps the model to
distinguish between cases where symptom descrip-
tions alone may be misleading. This additional audio
data reduces the model’s dependency on subjective
and potentially biased text inputs, thereby improv-
ing both accuracy and generalizability.
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Table 8: Performance of different fusion methods in our framework when testing on source datasets.

Task S1 S2 S3 S4 S5 S6 S7 Avg.

Fusion - Soft 0.9065 0.8927 0.7436 0.7396 0.5884 0.5833 0.9543 0.7726
Fusion - Add 0.7525 0.7828 0.7289 0.7223 0.5653 0.5930 0.6941 0.6913
Fusion - CrossAttn 0.8131 0.8369 0.7870 0.7805 0.5754 0.5872 0.7942 0.7392

RespLLM (Ours) 0.9244 0.9002 0.7958 0.7840 0.6189 0.6274 1.0000 0.8072

Table 9: Performance of different fusion methods in our framework when zero-shot testing on test datasets.

Task T1 T2 T3 T4 T5 Avg. T6

Fusion - Soft 0.6284 0.6504 0.6550 0.6375 0.6458 0.6434 -
Fusion - Add 0.6552 0.6396 0.5725 0.5350 0.5500 0.5905 -
Fusion - CrossAttn 0.7272 0.7112 0.5500 0.6125 0.5292 0.6260 -

RespLLM (Ours) 0.6424 0.6284 0.6525 0.6750 0.6750 0.6547 0.5865

Table 10: Performance of different LLMs in our framework when testing on source datasets.

Task S1 S2 S3 S4 S5 S6 S7 Avg.

Gemma2 (2B) 0.9221 0.8927 0.7555 0.7202 0.5840 0.5709 0.9953 0.7772
Phi-3.5(4B) 0.9250 0.8989 0.7909 0.7886 0.5964 0.6050 1.0000 0.8007
Mistral (7B) 0.9236 0.9006 0.7889 0.7765 0.6040 0.6096 1.0000 0.8005
LLaMA (7B) 0.9225 0.9055 0.7899 0.7934 0.5986 0.6010 1.0000 0.8016
LLaMA3 (8B) 0.9269 0.9061 0.8048 0.7988 0.6131 0.6171 1.0000 0.8095

OpenBioLLM 0.9244 0.9002 0.7958 0.7840 0.6189 0.6274 1.0000 0.8072

Table 11: Performance of different LLMs in our framework when zero-shot testing on test datasets.

Task T1 T2 T3 T4 T5 T6 Avg.

Gemma2 (2B) 0.6456 0.6256 0.6500 0.5850 0.6833 0.5514 0.6255
Phi (4B) 0.6232 0.6200 0.5975 0.6375 0.6583 0.5039 0.6097
Mistral (7B) 0.6264 0.6068 0.6425 0.6575 0.6958 0.5826 0.6368
LLaMA (7B) 0.6368 0.6340 0.6400 0.6050 0.7083 0.5565 0.6322
LLaMA3 (8B) 0.6388 0.6152 0.6425 0.6625 0.6750 0.5797 0.6372

OpenBioLLM (8B) 0.6424 0.6284 0.6525 0.6750 0.6750 0.5865 0.6449

Table 12: Examples of mispredictions where single modality fails.

Example Textual information Label RespLLM RespLLM
w/o text

RespLLM
w/o audio

1 Gender: Male. Age: 30-39. Patient presents with
no medical history conditions. Patient presents
with the following respiratory symptoms: fever,
chills, headache, muscle aches.

covid ✓ × ✓

2 Gender: Female. Age: 45-64. Patient presents
with no medical history conditions. Patient
presents with the following respiratory symp-
toms: headache.

non-covid ✓ ✓ ×
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